Краевая научно-практическая конференция учебно-исследовательских работ учащихся 6-11 классов «Прикладные и фундаментальные вопросы математики»

Методические аспекты изучения математики

Геометрические решения негеометрических задач

Гусев Артём Сергеевич,
11 кл., МБОУ «Ильинская СОШ №1»,
Ильинский район,
Самохина Наталья Александровна,
учитель математики высшей категории.

Оглавление

Введение	.3
1. Геометрические решения текстовых задач	5
1.1 Задачи на движение	6
1.2 Задачи на работу	10
2. Геометрические решения тригонометрических задач	12
3. Геометрические решения алгебраических задач	15
4. Геометрические решения задач с параметрами	25
Заключение	34
Список использованной литературы	.35

Введение

Знание особых приёмов и подходов к решению математических задач позволяют не только правильно их решать, но и решать простым и оригинальным способом.

В данной работе представлен геометрический метод решения задач, который основан на наглядно-геометрических интерпретациях, связанных с геометрическим смыслом модуля, формулой расстояния между двумя точками на плоскости, неравенством треугольника, построением графического образа задачи на координатной плоскости Оху.

Существенными признаками этого метода являются геометрические представления законы геометрии, В которых отражены И геометрических фигур. Геометрические методы используются при решении задач на движение, на работу, в задачах тригонометрии, при вычислении наибольших и наименьших значений выражений, при решении уравнений, неравенств и их систем с параметрами. Задачи таких видов ежегодно содержатся в заданиях ЕГЭ. Таким образом, выбранная тема актуальна и перспективна. Из-за сложности, нестандартности геометрический метод решения задач в школьном курсе математики не изучается. Тем важнее данное исследование.

Проблема: многие задачи алгебры очень трудно решить аналитическим путём.

Гипотеза: решение задач геометрическим методом направляется наглядным представлением условий в виде рисунка или чертежа, что помогает глубже понять условие задачи, делает их более наглядным, очевидным, значительно упрощает решение, ведёт к более быстрому получению ответа.

Цель: изучение геометрического метода решения задач.

Объект исследования: математические задачи.

Предмет исследования: геометрический метод решения задач.

Задачи:

- 1. Обозначить ключевые положения теории.
- 2. Определить задачи, которые удобнее решать геометрическим методом.
- 3. Рассмотреть задачи различной степени сложности с использованием приёмов геометрического метода.

- 4. Составить алгоритм решения задач геометрическим методом.
- 5. Создать электронную презентацию.

Структура работы: работа состоит из 4 глав

- Глава 1. Геометрические решения текстовых задач (задачи на движение и на совместную работу).
 - Глава 2. Геометрические решения тригонометрических задач.
 - Глава 3. Геометрические решения алгебраических задач.
 - Глава 4. Геометрические решения задач с параметрами.

Геометрические методы решения задач описываются в книге Г.З.Генкеля «Геометрические решения негеометрических задач», - Москва: Просвещение 2007.

1. Геометрические решения текстовых задач

Очень многие текстовые задачи на составление уравнений (или систем уравнений) можно решать графически. К ним относятся задачи на движение и на совместную работу. Изображая графики, можно находить зависимости между величинами, применяя геометрические знания (признаки подобия и равенства треугольников, свойства средней линии треугольника), а можно решать задачу, составляя числовое выражение, уравнение или систему уравнений.

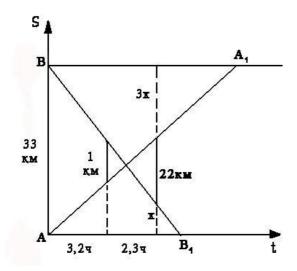
Рассмотрим геометрический метод с использованием графического.

При решении задач на равномерное движение используют графики линейной функции. По оси абсцисс обычно откладывают время, а по оси ординат — расстояние. В таком случае абсцисса любой точки графика движения указывает момент времени, а ордината той же точки - в каком месте пути в этот момент находится тело. Если на одном чертеже построены 2 графика движения, причём эти графики пересекаются, то абсцисса точки пересечения — это время встречи, а ордината — место встречи.

1.1 Задачи на движение

Задача 1. (Встречное движение).

Два туриста отправились одновременно из пунктов А и В, расстояние между которыми 33 км, навстречу друг другу. Через 3ч 12мин расстояние между ними сократилось до 1км (они еще не встретились), а еще через 2ч 18мин первому осталось пройти до В втрое больше расстояния, чем второму до А. Найдите скорости туристов.



Решение: AA_1 – график движения первого туриста

 BB_1 — график движения второго

1) (33-1): 3,2=10 км/ч – скорость сближения.

2) $(10 \cdot 2,3-1) = 22$ км – расстояние между туристами через 2,3 ч.

Пусть x км осталось пройти второму туристу до A.

3)
$$x + 3x = 11$$

 $x = 2,75$

4) (22 + 2.75): 5.5 = 4.5 км/ч – скорость туриста, вышедшего из А.

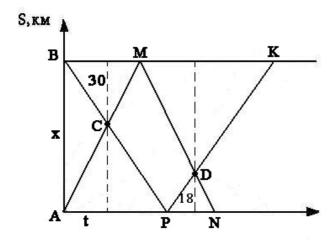
5) $(22 + 3 \cdot 2,75)$: 5,5 = 5,5 км/ч — скорость туриста, вышедшего из В.

Ответ: скорость первого туриста равна 4,5 км/ч; скорость второго -5,5 км/ч.

Задача 2.

Из пунктов А и В одновременно навстречу друг другу выехали два велосипедиста и встретились в 30 км от В. Прибыв в А и В, они повернули

обратно. Вторая встреча произошла в 18 км от А. Найдите расстояние между А и В.



Решение: Пусть V_1 — скорость одного велосипедиста.

 V_2 — скорость другого.

t — время движения велосипедистов до первой встречи.

x км — расстояние между A u B.

АМО-график движения первого велосипедиста до второй встречи.

ВРО - график движения второго велосипедиста до второй встречи.

$$V_1 = \frac{x-30}{t}$$
; $V_2 = \frac{30}{t}$; $\frac{V_1}{V_2} = \frac{x-30}{30}$

1)
$$V_1 = \frac{x+x-18}{t} = \frac{2x-18}{t}$$
; $V_2 = \frac{x+18}{t}$; $\frac{V_1}{V_2} = \frac{2x-18}{x+18}$

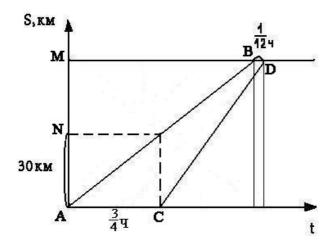
Учитывая 1) и 2) получим: $\frac{x-30}{30} = \frac{2x-18}{x+18}$;

x = 72 (км) — расстояние между A и B.

Ответ: расстояние между А и В равно 72 км.

Задача 3. (Движение из одного пункта в одном направлении).

Из пункта A в пункт B выехал автобус со скоростью 40 км/ч. После того как автобус проехал 30 км, из пункта A со скоростью 60 км/ч выехал автомобиль, который прибыл в пункт B на 1/12ч позже автобуса. Найдите расстояние между пунктами.



АВ — график движения автобуса.

CD – график движения автомобиля.

Решение: х км – расстояние между пунктами.

$$\frac{x}{40} - \frac{3}{4} = \frac{x}{60} - \frac{1}{12}$$
;

$$\frac{x}{40} - \frac{x}{60} = \frac{3}{4} - \frac{1}{12};$$

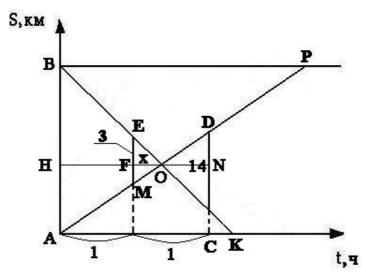
$$3 x-2 x=90-10, x = 80 (\kappa M).$$

Ответ: 80 км.

Задача 4. (Задача на сближение).

Из A в В вышел пешеход. Одновременно с ним из пункта В во встречном направлении выехал велосипедист. Они двигались с постоянными скоростями, и через час расстояние между ними равнялось 3 км, а еще через час — 14 км. Найдите расстояние между A и B.

1-й случай:



АР – график движения пешехода

ВК – график движения велосипедиста

Решение: \triangle OME ∞ \triangle ODC

$$\frac{DC}{EM} = \frac{ON}{OF}$$

$$\frac{14}{3} = \frac{1-x}{x}$$

$$14x = 3 - 3x$$

$$17x = 3$$

$$x = \frac{3}{17}$$
 \mathbf{q}

$$1 - \frac{3}{17} = \frac{14}{17} - ON$$

$$1 + \frac{3}{17} = 1 \frac{3}{17} - OH$$

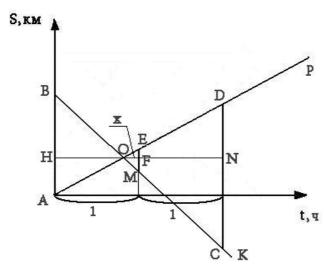
$$\triangle ABO \sim \triangle ODC$$

$$\frac{AB}{CD} = \frac{OH}{ON}$$

$$\frac{z}{14} = 14.1 \frac{3}{17}$$

$$z = 20 \text{ km} - \text{AB}$$

2-й случай:



АР – график движения пешехода

ВК – график движения велосипедиста

Решение: Λ OFM ∞ Λ OCD

$$\frac{EM}{OF} = \frac{DC}{ON}; \quad \frac{3}{x} = \frac{14}{1+x}, \quad x = \frac{3}{11}(u.)$$

ΔOAB ∞ ΔODC

$$\frac{AB}{HO} = \frac{CD}{ON}; \quad \frac{AB}{1-x} = \frac{14}{1+x}; \quad AB = \frac{14(1-x)}{1+x} = \frac{14\left(1-\frac{3}{11}\right)}{1+\frac{3}{11}} = 8 \text{ км}.$$

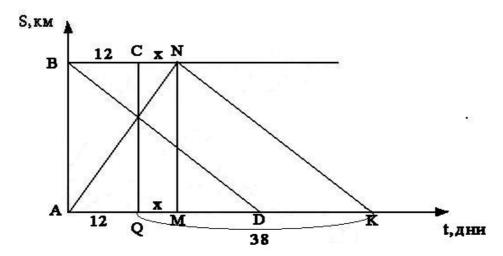
Ответ: 8 км, 20 км.

1.2 Задачи на работу

Задачи этого типа содержат сведения о выполнении несколькими субъектами (рабочими, механизмами и т.д.) определенной работы. Эти задачи схожи с задачами на движение: роль скорости здесь играет производительность, роль расстояния – объем работы.

Задача 5.

Двое рабочих, выполняя задание вместе, могли бы закончить его за 12 дней. Если сначала будет работать только один из них, а когда он выполнит половину всей работы, его сменит второй рабочий, то всё задание будет закончено за 25 дней. За сколько дней каждый рабочий в отдельности может выполнить всё задание?



Решение: Предположим, что первый рабочий работает быстрее, чем второй. Отрезок AN — график работы первого рабочего, а отрезок BD — график работы второго рабочего.

AQ изображает время совместной работы; AQ=12 ч.

Проведем NK BD, тогда AK=50, QK=38

∆BPN∞∆APD

$$\frac{12+x}{x} = \frac{12+38-(12+x)}{12}$$

$$\frac{12+x}{x} = \frac{38-x}{12};$$

$$12(12+x) = x(38-x)$$

$$x^2-26x+144=0$$

 x_1 =18 - не подходит, т.к .первый рабочий работает быстрее. Тогда время первого 12+8=20 дней, а второго 38-8=30 дн.

Ответ: первый за 20 дней, а второй за 30 дней.

В этой задаче геометрический метод решения представляет собой интеграцию графического метода, метода подобия треугольников и метода уравнений.

Вывод: решение текстовых задач геометрическим методом основывается на точных геометрических соотношениях. Преимущество геометрического решения в его наглядности.

2. Геометрические решения тригонометрических задач

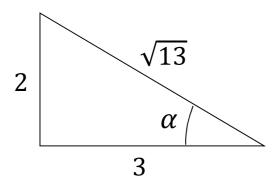
Многие тригонометрические задачи решаются очень сложно, а использование какого-нибудь геометрического приема дает короткое решение.

Прием прямоугольного треугольника.

Пример 1. Вычислить $2\sqrt{13}\cos(arctg\frac{2}{3})$.

Решение. Все значения обратных тригонометрических функций от положительных чисел – это углы, лежащие в 1 четверти, то есть острые углы. Поэтому их можно найти в прямоугольном треугольнике.

 $arctg\frac{2}{3}$ — это угол в треугольнике, тангенс которого равен $\frac{2}{3}$, то есть противолежащий катет относится к прилежащему как 2:3. По теореме Пифагора находим гипотенузу.



Теперь можно находить значение любой тригонометрической функции арктангенса.

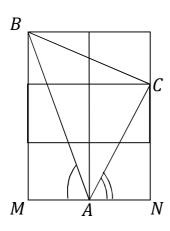
$$\cos \arctan \frac{2}{3} = \frac{3}{\sqrt{13}} \Leftrightarrow 2\sqrt{13}\cos \arctan \frac{2}{3} = 6.$$

 $arctg\ 1 = \angle BAC$

Ответ: 6.

Пример 2. Вычислим $arctg\ 1 + arctg\ 2 + arctg\ 3$.

Решение:1)
$$arctg\ 3 = \angle BAM$$
 $arctg\ 2 = \angle CAH$



$$MB = 3$$
, $AM = 1$, $AB = \sqrt{10}$

$$CN = 2$$
, $AN = 1$, $AC = \sqrt{5} = BC$

$$AB^2 = AC^2 + BC^2 \Leftrightarrow \angle BCA = 90^\circ, \angle BAC = 45^\circ.$$

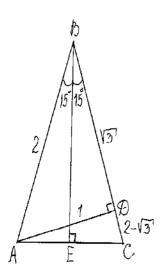
$$arctg\ 2 + arctg\ 3 + arctg\ 1 = \pi$$
.

Ответ: π

Пример 4. Вычислить sin 15°.

Решение: Первый способ (геометрический).

Рассмотрим равнобедренный треугольник ABC (AB=CB)), \angle ABC=30 $^{\circ}$.



- 1) Проведём в ΔABC высоты AD и BE.
- 2) B \triangle ACD \angle CAD=15°, sin 15° = $\frac{CD}{AC}$.
- 3) Если AD = 1, то AB = 2 и BD = $\sqrt{3}$, тогда CD = 2 - $\sqrt{3}$, AC² = 8 - $4\sqrt{3}$,

$$AC = 2\sqrt{2 - \sqrt{3}}.$$

$$\sin 15^\circ = \frac{CD}{AC} = \frac{2 - \sqrt{3}}{2\sqrt{2 - \sqrt{3}}} = \frac{\sqrt{2 - \sqrt{3}}}{2}.$$

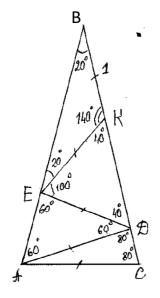
Второй способ (использование формул понижения степени).

$$\sin^2 15^\circ = \frac{1 - \cos 30^\circ}{2} = \frac{2 - \sqrt{3}}{4}, \quad \sin 15^\circ = \frac{\sqrt{2 - \sqrt{3}}}{2}.$$

Пример 5. Доказать тождество: $\cos 40^{\circ} + \cos 80^{\circ} = \cos 20^{\circ}$.

Решение: Первый способ (приём равнобедренного треугольника)

Рассмотрим равнобедренный треугольник ABC (AB = BC), \angle ABC=20°



- 1) Пусть D ∈ BC, K ∈ BC, E ∈ AB и BK = KE = ED = DA =1.
- 2) BE = 2 cos 20°, AE = 1, BK = 1, KD = 2 cos 40°, DC = 2 cos 80°.
- 3) AE + EB = CD + DK + KB.

$$1 + 2 \cos 20^{\circ} = 2 \cos 80^{\circ} + 2 \cos 40^{\circ} + 1$$
,
 $\cos 40^{\circ} + \cos 80^{\circ} = \cos 20^{\circ}$.

Второй способ (с использованием формулы суммы косинусов)

 $\cos 40^{\circ} + \cos 80^{\circ} = 2 \cos 60^{\circ} \cos 20^{\circ} = 2^{\circ} 0.5^{\circ} \cos 20^{\circ} = \cos 20^{\circ}$.

В последних задачах геометрический способ не является самым простым, но довольно интересным для размышления.

Вывод: Использование геометрического подхода делает решение тригонометрических задач практически устными .

3. Решение алгебраических задач геометрическими методами

Алгебра и геометрия — это составляющие одного целого. «Алгебра — не что иное, как записанная в символах геометрия, а геометрия- это просто алгебра, воплощённая в фигурах» (крылатая фраза замечательного французского математика Софии Жермен (1776-1831)).

Между геометрическими и алгебраическими задачами, между языком алгебры (языком формул) и языком геометрии (языком расстояний) существует очевидная связь.

Алгебраический язык (язык	Геометрический язык (язык
формул)	расстояний)
Числа и буквы	Координаты
Модуль разности двух чисел	Расстояние между двумя точками
	координатной прямой
Сумма квадратов двух чисел	Квадрат расстояния между двумя
	точками координатной плоскости
$x^2 + y^2 = R^2$	Окружность с центром в начале
	координат и радиусом R
$(x-a)^2+(y-b)^2=R^2$	Окружность с центром $(a; b)$ и
	радиусом R
y = kx + b	Уравнение прямой

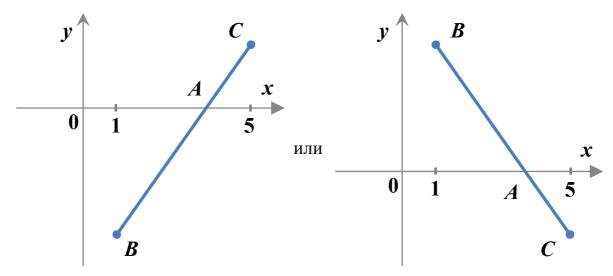
Геометрическим методом хорошо решаются уравнения и неравенства, также их системы. Рассмотрим несколько примеров.

Пример 1. Найти наименьшее значение функции: $y = \sqrt{(x-1)^2 + 4} + \sqrt{(x-5)^2 + 1}$.

Решение:
$$y = \sqrt{(x-1)^2 + (0\pm 2)^2} + \sqrt{(x-5)^2 + (0\pm 1)^2}$$
 $\sqrt{(x-1)^2 + (0\pm 2)^2}$ - расстояние между точками $A(x;0)$ и $B(1;\pm 2)$ $\sqrt{(x-5)^2 + (0\pm 1)^2}$ – расстояние между точками $A(x;0)$ и $C(5;\pm 1)$

Решить задачу — значит найти такую точку A оси абсцисс, сумма расстояний от которой до двух данных точек минимальна.

Точки В и С должны лежать по разные стороны от оси абсцисс, т.е. B(1;-2); C(5;1) или B(1;2); C(5;-1).



Уравнение ВС:
$$y = kx + b$$
 $\begin{cases} -2 = k + b \\ 1 = 5k + b \end{cases}$ $4k = 3$ $k = \frac{3}{4}$ $b = -2\frac{3}{4}$ Уравнение прямой ВС: $y = \frac{3}{4}x - 2\frac{3}{4}$ $A\epsilon y = \frac{3}{4}x - 2\frac{3}{4}$ $0 = \frac{3}{4}x - \frac{11}{4}$; $x = \frac{11}{3}$

Уравнение ВС:
$$y = kx + b$$

$$\begin{cases} 2 = k + b \\ -1 = 5k + b \end{cases}$$

$$4k = -3 \quad k = -\frac{3}{4}$$

$$b = 2\frac{3}{4}$$
Уравнение прямой ВС: $y = -\frac{3}{4}x + 2\frac{3}{4}$

$$0 = -\frac{3}{4}x + 2\frac{3}{4}$$

$$x = \frac{11}{3}$$

$$y_{\text{наименьшее}} = \sqrt{\left(\frac{11}{3} - 1\right)^2 + 4} + \sqrt{\left(\frac{11}{3} - 5\right)^2 + 1} = \sqrt{\frac{64}{9} + 4} + \sqrt{\frac{16}{9} + 1} = \frac{10}{3} + \frac{5}{3} = 5.$$

Ответ: 5.

Пример 2. Найти наименьшее значение функции

$$y = \sqrt{x^2 - 2x + 5} + \sqrt{x^2 - 16x + 89}$$

Решение:
$$x^2 - 2x + 5 = (x^2 - 2x + 1) + 4 = (x - 1)^2 + 4$$

 $x^2 - 16x + 89 = (x^2 - 2 \cdot 8 + 64) - 64 + 89 = (x - 8)^2 + 25$
 $y = \sqrt{(x - 1)^2 + 4} + \sqrt{(x - 8)^2 + 25} =$

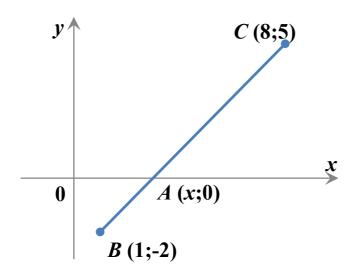
$$=\sqrt{(x-1)^2+(0\pm 2)^2}+\sqrt{(x-8)^2+(0\pm 5)^2}$$
 $\sqrt{(x-1)^2+4}$ - расстояние между двумя точками АВ, где A(x ; 0); B(1; ± 2) $\sqrt{(x-8)^2+25}$ – расстояние между двумя точками АС, где A(x ; 0); C(8; ± 5)

Решить задачу — значит найти такую точку A(x;0) оси абсцисс сумма расстояний от которой до двух данных точек минимальна.

Сумма расстояний будет наименьшей, если точки A, B, C будут лежать на одной прямой, пересекающей ось OX.

Значит B (1; -2); C (8; 5) или B (1; 2); C (8; -5).

1) Рассмотрим первый вариант:



Уравнение прямой: y = kx + b; В, С $\in y = kx + b$.

$$\begin{cases}
-2 = k + b \\
5 = 8k + b
\end{cases} 7k = 7, \quad k = 1$$

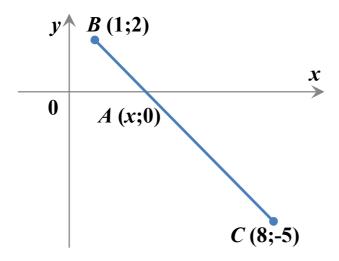
$$b = -2 - 1 = -3$$

Уравнение прямой ВС: y = x - 3; A ∈ BC;

$$0 = x - 3;$$
 $x = 3;$ A(3; 0)

$$y_{\text{наименьшее}} = \sqrt{(3-1)^2 + 4} + \sqrt{(3-8)^2 + 25} = \sqrt{2^2 + 4} + \sqrt{5^2 + 25} = \sqrt{8} + \sqrt{50} = 2\sqrt{2} + 5\sqrt{2} = 7\sqrt{2}$$
.

2) Второй вариант: В (1; 2), C(8; -5).



Уравнение прямой: y = kx + b; В, $C \in y = kx + b$.

$$\begin{cases} 2 = k + b \\ -5 = 8k + b \end{cases} 7k = -7, , k = -1$$

Уравнение прямой ВС: y = -x + 3; $A \in BC$;

$$0 = -x + 3$$
; $x = 3$; A(3; 0)

$$y_{\text{наименьшее}} = \sqrt{(3-1)^2 + 4} + \sqrt{(3-8)^2 + 25} =$$

= $\sqrt{2^2 + 4} + \sqrt{5^2 + 25} = \sqrt{8} + \sqrt{50} = 2\sqrt{2} + 5\sqrt{2} = 7\sqrt{2}$.

Ответ: $7\sqrt{2}$

b = 2 + 1 = 3:

Пример 3. Найти наименьшее значение функции

$$y = \sqrt{(x-1)^2 + (x-6)^2} + \sqrt{(x-4)^2 + (x-2)^2}$$

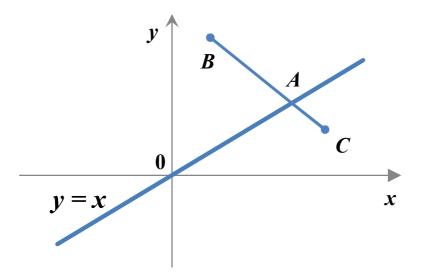
Решение: Переведём условия задачи с языка формул на язык расстояний.

Правая часть функции – сумма расстояния от точки A(x; x) прямой y = x до точек B(1; 6) и C(4; 2).

Первое слагаемое $\sqrt{(x-1)^2+(x-6)^2}$ – это расстояние от точки A(x;x) до точки B(1;6).

Второе слагаемое $\sqrt{(x-4)^2+(x-2)^2}$ - это расстояние от точки A(x;x) до точки C(4;2).

Решить задачу — значит найти такую точку A прямой y = x, сумма расстояний от которой до данных точек минимальна.



Уравнение ВС: y = kx + b;

$$\begin{cases} 6 = k + b \\ 2 = 4k + b \end{cases} 3k = -4 \quad k = -\frac{4}{3} \quad b = 7\frac{1}{3}$$

$$y = -\frac{4}{3}x + \frac{22}{3}$$
 — уравнение ВС.

$$A(x; x) \in y = -\frac{4}{3}x + \frac{22}{3}$$

$$x = -\frac{4}{3}x + \frac{22}{3}$$
 $\frac{7}{3}x = \frac{22}{3}$ $x = \frac{22}{7}$

$$y_{\text{наименьшее}} = \sqrt{(\frac{22}{7} - 1)^2 + (\frac{22}{7} - 6)^2} + \sqrt{(\frac{22}{7} - 4)^2 + (\frac{22}{7} - 2)^2} = 0$$

$$= \sqrt{\frac{225}{49} + \frac{400}{49}} + \sqrt{\frac{36}{49} + \frac{64}{49}} = \frac{25}{7} + \frac{10}{7} = \frac{35}{5} = 5$$

Ответ: 5.

Пример 4. Решить уравнение $\sqrt{x^2 - 2x + 2} + \sqrt{x^2 - 10x + 29} = 5$.

Решение:
$$\sqrt{(x^2 - 2x + 1) - 1 + 2} + \sqrt{(x^2 - 10x + 25) - 25 + 29} = 5$$

$$\sqrt{(x - 1)^2 + 1} + \sqrt{(x - 5)^2 + 4} = 5$$

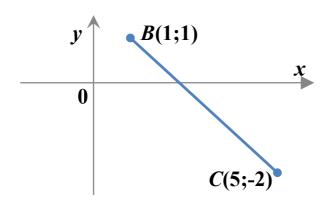
Решим уравнение методом оценки. Для этого докажем, что наименьшее значение левой части равно 5.

Левая часть уравнения — сумма расстояний от точки A(x; 0) оси абсцисс до точки B(1; 1) и C(5; -2) или до точек B(1; -1) и C(5; 2).

Решить уравнение — значит найти такую точку A оси абсцисс, сумма расстояний от которой до данных точек минимальна и равна 5.

Точки В и С должны лежать по разные стороны от оси OX.

1)



Уравнения ВС: y = kx + b

$$\begin{cases} 1 = k + b \\ -2 = 5k + b \end{cases}$$

$$4k = -3$$
 $k = -\frac{3}{4}$, $b = \frac{7}{4}$

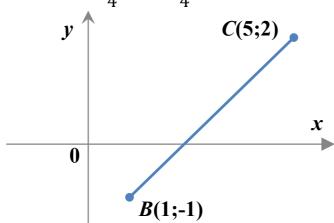
$$y = -\frac{3}{4}x + \frac{7}{4}$$
 — уравнение ВС;

$$A \in BC$$
; $0 = -\frac{3}{4}x + \frac{7}{4}$, $x = \frac{7}{3}$

2) Уравнение ВС: y = kx + b

$$\begin{cases}
-1 = k + b \\
2 = 5k + b
\end{cases}$$

$$4k = 3 \quad k = \frac{3}{4}, b = -\frac{7}{4}$$



$$y = \frac{3}{4}x - \frac{7}{4}$$
 — уравнение ВС;

$$A \in BC$$
; $0 = \frac{3}{4}x - \frac{7}{4}$, $x = \frac{7}{3}$.

 $A\left(\frac{7}{3};0\right)$. Наименьшее значение левой части уравнения

$$\sqrt{(\frac{7}{3}-1)^2+1}+\sqrt{(\frac{7}{3}-5)^2+4}=\sqrt{\frac{16}{9}+1}+\sqrt{\frac{64}{9}+4}=\frac{5}{3}+\frac{10}{3}=5.$$

Левая часть уравнения больше или равна 5.

Правая часть уравнения равна 5.

Равенство возможно при $x = \frac{7}{3}$.

Otbet: $x = \frac{7}{3}$.

Пример 5. Решить систему уравнений

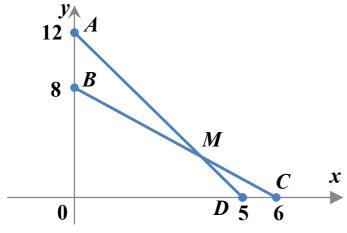
$$\begin{cases} \sqrt{x^2 + (y-8)^2} + \sqrt{(x-6)^2 + y^2} = 10\\ \sqrt{(x-5)^2 + y^2} + \sqrt{x^2 + (y-12)^2} = 13 \end{cases}$$

Решение: Левая часть первого уравнения — сумма расстояний от точки M(x; y) до точек B(0; 8) и C(6; 0).

Левая часть второго уравнения — сумма расстояния от точки A(x; y) до точек D(5; 0) и A(0; 12).

Решить систему – значит найти все точки M(x; y), для каждой из которых MC + MB = CB, MA + MD = AD.

Уравнение прямой ВС: y = kx + b



$$\begin{cases} 8 = 0k + b \\ 0 = 6k + b \end{cases}$$

$$6k = -8, \qquad k = -\frac{4}{3}; \quad b = 8$$

$$y = -\frac{4}{3}x + 8$$
 – уравнение ВС.

Уравнение прямой AD: y = kx + b

$$\begin{cases} 0 = 5k + b \\ 12 = 0k + b \end{cases} 5k = -12, \ k = -\frac{12}{5}, \ b = 12$$

$$y = -\frac{12}{5}x + 12$$
 - уравнение AD

Найдём координаты точки М

$$\begin{cases} y = -\frac{4}{3}x + 8\\ y = -\frac{12}{5}x + 12 \end{cases}; \qquad \frac{-4x + 24}{3} = \frac{-12x + 60}{5};$$

$$-20x + 120 = -36x + 180$$

$$16x = 60$$
, $x = \frac{15}{4}$, $y = -\frac{4}{3} * \frac{15}{4} + 8 = 3$, $M\left(\frac{15}{4}; 3\right)$.

Otbet:
$$x = \frac{15}{4}$$
, $y = 3$.

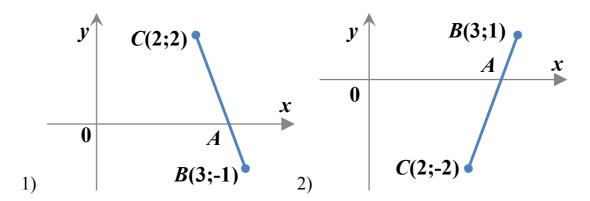
Пример 6. Решить неравенство
$$\sqrt{(x-3)^2+1}+\sqrt{(x-2)^2+4} \le \sqrt{10}$$

Решение: Для решения неравенства используем метод оценки. Докажем, что наименьшее значение левой части неравенства равно $\sqrt{10}$.

Левая часть неравенства — сумма расстояний от точки A(x;0) оси абсцисс до точек B(3;1) и C(2;-2) или до точек B(3;-1) и C(2;2)

Решить неравенство — значит найти такую точку A оси абсцисс, сумма расстояний от которой до данных точек минимальна и равна $\sqrt{10}$.

Возможны варианты:



Уравнение прямой ВС:

Уравнение прямой ВС:

$$y = kx + b$$
 $y = kx + b$ $\begin{cases} -1 = 3k + b \\ 2 = 2k + b \end{cases}$ $\begin{cases} 1 = 3k + b \\ -2 = 2k + b \end{cases}$ $k = 3$ $b = 8$ $k = 3$ $b = -8$ $y = -3x + 8$ - уравнение BC $y = 3x - 8$ - уравнение BC $A \in BC$ A

Наименьшее значение левой части неравенства равно:

$$\sqrt{\left(\frac{8}{3}-3\right)^2+1}+\sqrt{\left(\frac{8}{3}-2\right)^2+4}=\sqrt{\frac{1}{8}+1}+\sqrt{\frac{4}{9}+4}=\frac{\sqrt{10}}{3}+\frac{2\sqrt{10}}{3}=\sqrt{10}$$

Левая часть неравенства больше или равна $\sqrt{10}$. Правая часть — равна $\sqrt{10}$. Неравенство может выполняться при условии левой части $\sqrt{10}$. Это возможно при $x=\frac{8}{3}$

Otbet: $\frac{8}{3}$

Вывод: геометрический метод решения алгебраических задач основан на наглядно—геометрических интерпретациях, связанных с формулой расстояния между двумя точками на плоскости, построением графического образа задачи на координатной плоскости Оху.

Преимущество решения алгебраических задач **геометрическим методам** состоит в следующем:

- 1. При решении задач чётко определяется начало действия;
- 2. Графическая иллюстрация облегчает проведения анализа, составление уравнений, помогает найти способ решения.

4. Задачи с параметрами

Изучение многих физических процессов, химических, экономических и многих других закономерностей имеют практическую направленность и часто приводят к решению задач с параметрами, которые бывают весьма сложными и требующими нестандартного подхода к решению.

Аналитические (алгебраические) методы решения задач с параметрами довольно громоздки, требуют аккуратности выкладок, умения не «потерять решение», проверить всевозможные значения параметра. Возникает проблема: найти наиболее простой и наглядный способ решения задач с параметрами, позволяющий сравнительно легко получить ответ. Удобно решать задачи с параметрами путем обращения к наглядно-графическим интерпретациям. Схема, рисунок, график, помогают в поисках решения. Знание свойств элементарных функций, их графиков и простейших способов преобразования (f(x+a); f(-x); -f(x); rf(x); f(x)+a) позволяет существенно упростить анализ задачи, быстро найти правильный ответ. А в ряде случаев представляет собой единственный «ключ» к решению.

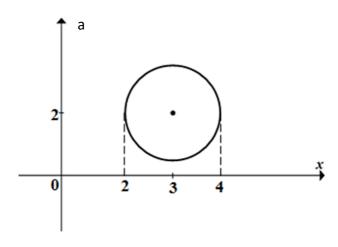
Пример 1. При каких значениях параметра a модуль разности корней уравнения $x^2 - 6x + 12 + a^2 - 4a = 0$ принимает наибольшее значение?

Решение: Модуль разности двух чисел — это расстояние между двумя точками координатной прямой.

Выделим полные квадраты в левой части уравнения,

$$(x^2 - 6x + 9) + (a^2 - 4a + 4) = 1$$

 $(x-3)^2 + (a-2)^2 = 1$. Это уравнение окружности с центром (3;2) и радиусом 1 в системе координат 0xа.



Корни уравнения равны абсциссам точек пересечения окружности и прямой, параллельной оси абсцисс. Расстояние между точками будет наибольшим, если они являются концами диаметра окружности равного 2.

$$x_1=2;$$
 $x_2=4;$ $|x_2-x_1|=2.$ Найдём значение a : 1) $x=2;$ $(2-3)^2+(a-2)^2=1$ $1+(a-2)^2=1$ $(a-2)^2=0$ $a=2$ $2) x=4;$ $(4-3)^2+(a-2)^2=1$ $a-2=0.$ $a=2$

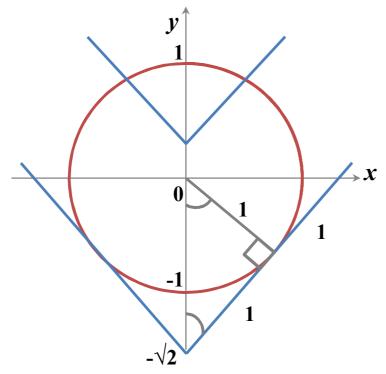
Ответ: a = 2.

Пример 2. Найти значение параметра a, при которых система уравнений

$$\begin{cases} x^2 + y^2 = 1 \\ y = |x| + a \end{cases}$$
 имеет ровно два решения.

Решение: $x^2 + y^2 = 1$ - окружность с центром в начале координат и радиусом 1.

Уравнение y = |x| + a задаёт семейство «уголков» с вершиной на оси 0y.



«Уголок» касается окружности при $a = -\sqrt{2}$.

Ответ считывается с рисунка.

Система имеет ровно два решения при $a\{-\sqrt{2}\}\cup (-1;1)$.

Ответ: $a = \{-\sqrt{2}\} \cup (-1; 1)$.

Пример 3. Найти наименьшее значение параметра a, при котором система неравенств

$$\begin{cases} (x+4+2a)^2 + (y+1+a)^2 \le \frac{(a+1)^2}{80} \\ x-2y \ge -1 \end{cases}$$
 имеет единственное решение.

Решение: $(x+4+2a)^2+(y+1+a)^2 \leq \frac{(a+1)^2}{80}$ - круг с центром в точке

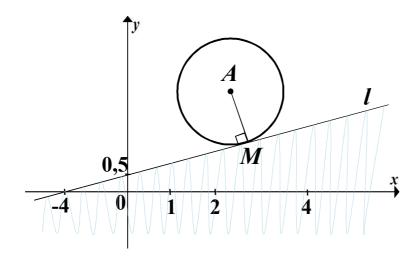
$$A(-4-2a;-1-a)$$
 и радиусом $\frac{|a+1|}{4\sqrt{5}}$.

$$x - 2y \ge -1$$
, $y \le 0.5x + 0.5$ - полуплоскость с границей $y = 0.5x + 0.5$

Уравнение прямой l: y = 0.5x + 0.5

$$k_l = 0.5 = > k_{AM} = -2$$
, т.к. АМ перпендикулярна $l.$

Система неравенств имеет единственное решение, если круг и прямая имеют единственную общую точку, точку касания М.



Это возможно при условии:

$$\begin{cases} y - y_A = k_{AM}(x - x_A) \\ AM = \sqrt{(x + 4 + 2a)^2 + (y + 1 + a)^2} = \frac{|a+1|}{4\sqrt{5}} \\ x - 2y = -1 \end{cases}$$

$$\begin{cases} y + 4 + 2a = -2(x + 1 + 2) \\ (x + 4 + 2a)^2 + (y + 1 + a)^2 = \frac{(a+1)^2}{80} \\ x - 2y = -1 \end{cases}$$

$$\begin{cases} 2x + y + 9 + 5a = 0 \\ x - 2y = -1 \end{cases}$$

$$\begin{cases} (x + 4 + 2a)^2 + (y + 1 + a)^2 = \frac{(a+1)^2}{80} \end{cases}$$

$$\begin{cases} x = -2a - 3.8 \\ y = -a - 1.4 \end{cases}$$

$$(-2a - 3.8 + 4 + 2a)^2 + (-a - 1.4 + 1 + a)^2 = \frac{(a+1)^2}{80}$$

$$0.2^2 + (-0.4)^2 = \frac{(a+1)^2}{80}; 0.2 = \frac{(a+1)^2}{80}; (a+1)^2 = 16; |a+1| = 4, a = 3; a = -5$$

Меньшее значение a = -5.

Ответ: a = -5.

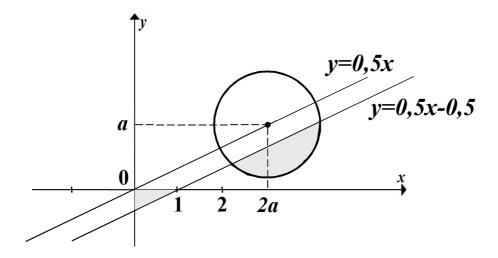
Пример 4. Найти все значения параметра a, при каждом из которых система неравенств

$$\begin{cases} \sqrt{(x-2a)^2+(y-a)^2} & \leq \frac{|a|}{6\sqrt{5}} \\ x-2y \geq 1 & \text{имеет решения.} \end{cases}$$

Решение: $(x-2a)^2+(y-a)^2\leq \frac{a^2}{180}$ - круг с центром в точке (2a;a) и радиусом $\frac{|a|}{6\sqrt{5}}$

$$y \le 0.5x - 0.5$$
 - полуплоскость с границей $y = 0.5x - 0.5$;

Система имеет решения, если круг и полуплоскость имеют общие точки: для этого расстояние от центра круга до прямой y = 0.5x - 0.5 должно быть не больше радиуса круга. Это расстояние между параллельными прямыми y = 0.5x и y = 0.5x - 0.5



$$\rho = \frac{0.5}{\sqrt{0.5^2 + 1^2}} = \frac{0.5}{0.5\sqrt{5}} = \frac{1}{\sqrt{5}}$$

Система имеет решения пи условии : $\frac{1}{\sqrt{5}} \le \frac{|a|}{6\sqrt{5}}$, $|a| \ge 6$, $\begin{cases} a \ge 6 \\ a \le -6 \end{cases}$ Ответ: $a \le -6$; $a \ge 6$.

Пример 5. Найдите все значения a, при каждом из которых система $\begin{cases} \sqrt{x^2 + 2x + y^2 - 4y + 5} + \sqrt{x^2 - 4x + y^2 - 12y + 40} = 5 \\ y = x^2 + a \end{cases}$ имеет ровно два решения.

Решение:
$$\sqrt{(x^2+2x+1)+(y^2-4y+4)}+\sqrt{(x^2-4x+4)+(y^2-12y+36)}=5$$

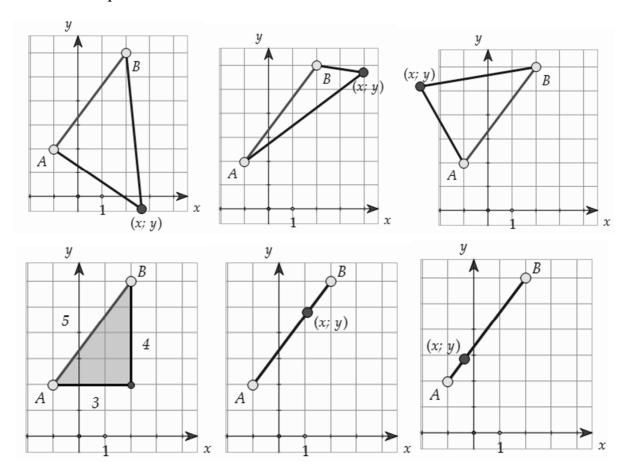
$$\sqrt{(x+1)^2+(y-2)^2}+\sqrt{(x-2)^2+(y-6)^2}=5$$

$$\sqrt{(x+1)^2+(y-2)^2}-\text{расстояние между точками M}(x;y)\text{и A}(-1;2).$$

$$\sqrt{(x-2)^2+(y-6)^2}-\text{расстояние между точками M}(x;y)\text{и B}(2;6).$$

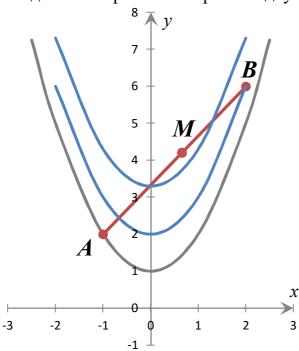
Сумма расстояний от точки M(x; y) до двух других точек A и B должна быть равна 5,т.е AM + MB = 5.

Возможны варианты:



Каждая сторона треугольника меньше суммы двух других сторон (неравенство треугольника), поэтому первые четыре варианта не устраивают. Это значит, что точка M(x;y) лежит на отрезке AB. Первое уравнение системы задаёт отрезок AB . Второе уравнение системы задаёт параболу.

Она должна пересекать отрезок в двух точках.



- 1) Первое пересечение возникнет в тот момент, когда парабола пройдёт через точку A (-1;2). Пересечение одно при a=1.
- 2) Если парабола пройдёт через точку В (2;6), то пересечений будет ровно два. Два пересечения при a=2 будет до тех пор, пока парабола не коснётся отрезка.
- 3) Парабола $y = x^2 + a$ коснется отрезка *BC*:

$$y = kx + b$$
, A(-1; 2) и B(2; 6)

$$\begin{cases} 2 = -k + b \\ 6 = 2k + b \end{cases}; \begin{cases} b = 2 + k \\ b = 6 - 2k \end{cases}; \ 2 + k = 6 - 2k; \iff k = \frac{4}{3}; b = \frac{10}{3}.$$

$$y = \frac{4}{3}x + \frac{10}{3}.$$

$$y = x^2 + a$$
; $y = \frac{4}{3}x + \frac{10}{3}$

$$x^2 - \frac{4}{3}x + a - \frac{10}{3} = 0$$

$$D = 0$$
; $b^2 - 4ac = 0$

$$\left(\frac{4}{3}\right)^2 - 4 \cdot \left(a - \frac{10}{3}\right) = 0$$

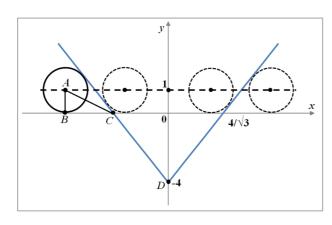
 $a = \frac{34}{9}$ — парабола коснется АВ. Одно пересечение.

При $a > \frac{34}{9}$ пересечений у параболы с отрезком нет.

Otbet: $a \in \left[2; \frac{34}{9}\right)$.

Пример 6. Найти наименьшее значение параметра c, при котором система $\begin{cases} \left(x-c\sqrt{3}\right)^2+y^2-2y=0 \\ \sqrt{3}|x|-y=4 \end{cases}$ имеет одно решение.

Решение:



 $I)\left(x-c\sqrt{3}\right)^2+y^2-2y+1=1$ $\left(x-c\sqrt{3}\right)^2+(y-1)^2=1$ — это семейство окружностей единичного радиуса с центром($c\sqrt{3}$; 1). Центры лежат на прямой y=1.

2)
$$y = \sqrt{3}|x| - 4$$
; $y = 0$ при $x = \pm \frac{4}{\sqrt{3}}$; $tg \angle OCD = k = \sqrt{3} \Rightarrow \angle OCD = 60^\circ$.

$$\angle ACB = \frac{1}{2} \angle OCD = 30^{\circ};$$

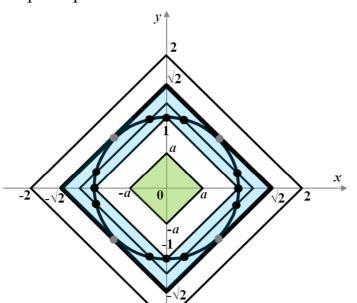
3)
$$\Delta$$
 BCA: AB = 1, $\angle C$ = 30°, AC = 2, тогда BC = $\sqrt{4-1}$ = $\sqrt{3}$;

$$BO = BC + CO = \frac{4}{\sqrt{3}} + \sqrt{3} = \frac{7}{\sqrt{3}}; \ A\left(-\frac{7}{\sqrt{3}}; 0\right); \ c\sqrt{3} = -\frac{7}{\sqrt{3}}; \ c = -\frac{7}{3};$$

Ответ:
$$c = -\frac{7}{3}$$
.

Пример 7. Сколько решений имеет система $\begin{cases} |x| + |y| = a \\ x^2 + y^2 = 1 \end{cases}$ в зависимости от

параметра а?



Ответ считывается с рисунка:

Решений нет при a < 1

4 решения при a=1

8 решений при $1 < a < \sqrt{2}$

4 решения при $a = \sqrt{2}$

Решений нет при $a > \sqrt{2}$

Ответ: решений нет, если a < 1или $a > \sqrt{2}$

4 решения, если a = 1 или

 $a=\sqrt{2}$.

8 решений, если $1 < a < \sqrt{2}$.

Геометрический метод является эффективным и при решении задач с параметрами. Он основан на наглядно-геометрических интерпретациях, связанных с геометрическим смыслом модуля, формулой расстояния между двумя точками на плоскости, неравенством треугольника.

Вывод: Геометрический метод нагляден, позволяет сэкономить время, увидеть и рассмотреть все возможные варианты решений, способствует не только выработке умений и закреплению навыков решения задач, но и формированию устойчивого интереса к предмету.

Алгоритм решения алгебраических задач геометрическим методом

- 1. Построить геометрическую модель алгебраической задачи и перевести её на язык геометрии.
 - 2. Решить получившуюся геометрическую задачу.
 - 3. Перевести полученный ответ с геометрического языка на естественный.

Заключение

В работе представлен геометрический метод решения негеометрических задач. Рассмотрены различные подходы к решениям, составлены алгоритмы. Ключ к решению таких задач содержится в геометрических интерпретациях. Рисунок не просто облегчает решение, а является существенным его этапом. Эффективность метода в наглядности и быстроте решения, в красоте математических выкладок, эстетике графического подхода к решению заданий.

Решение задач с параметрами требует догадки, «переноса знаний» в новую ситуацию, т.е. математического творчества.

Задачи с параметрами - эффективное упражнение для развития интеллекта, математического и логического мышления, умения анализировать, сравнивать, обобщать. Каждое из заданий с параметром представляет небольшую исследовательскую работу.

Таким образом, цель работы достигнута, выдвинутая гипотеза подтвердилась.

Новизна работы: Познавательный материал способствует не только выработке умений и закреплению навыков решения задач геометрическим методом, но и формированию устойчивого интереса к математике.

Практическая значимость:

- Знание приёмов решения негеометрических задач геометрическим методом позволяют успешно решать задачи ЕГЭ, конкурсные и олимпиадные задачи. Существенно упрощается решение, становится более понятным и наглядным.
- Возможность использования материалов исследования, компьютерной презентации на уроках математики при подготовке к ЕГЭ.

Список использованной литературы

1. Быков А.А.Сборник задач по математике.–М.:Изд..дом ГУ ВШЭ,2008

- 2. Генкель Г.З. «Геометрические решения негеометрических задач», Москва: Просвещение 2007.
- 3. Лысенко Ф.Ф. Учимся решать задачи с параметром. Ростов-на-Дону: Легион, 2012.
- 4. Окунев А.А. Графическое решение уравнений с параметрами. М.: Школа-Пресс,1996.
- 5. Пирютко О Н «Графический метод решения текстовых задач» Минск.: Новое знание,2010
- 6. Шарыгин И.Ф. Факультативный курс по математике. Решение задач-М. Просвещение, 1991.