Всероссийский конкурс учебно-исследовательских работ старшеклассников по политехническим, естественным, математическим дисциплинам для учащихся 9-11 классов

Химия

Учебно-исследовательская работа

Исследование взаимодействия 2,4-динитрохлорбензола с 9-(2,4-диаминофенил)-9*H*-карбазолом. Квантово-химическое моделирование продуктов взаимодействия.

Выполнили:

Кочкин Данил Алексеевич

Ионичев Егор Викторович

11 класс, 209 группа.

Научный руководитель:

Бердников Р.А.

Содержание

1.Введение	3
2. Обзор литературы	5
2.1. Методы получения аминов	5
2.2. Химические свойства аминов	7
3. Экспериментальная часть	11
3.1 Синтез 9-(2,4-диаминофенил)-9 <i>H</i> -карбазола	11
3.2. Взаимодействие 9-(2,4-диаминофенил)-9 <i>H</i> -карбазола с галогенаренами	12
4. Методики синтезов	18
Выводы	19
Список литературы	20
Благодарности	21

1. Введение.

Амины и их производные - один из важнейших и реакционноспособных классов органических соединений, на основе которых, в частности, возможно создание гетероциклических и биологически активных соединений. Так, лекарственные средства римантадин (рис. 1), фарингосепт (рис. 2) и многие другие содержат аминогруппы. То же можно сказать о пенециллинах (рис. 3), противораковом препарате таксоле (рис. 4) красителях, органических полупроводниковых материалах, удобрениях (мочевина) и др.

Рис. 1. Строение римантадина

Рис. 2. Строение фарингосепта

Рис. 3. Общая формула пенециллинов

Рис. 4. Строение таксола

Как следует из вышесказанного, химия аминов и его производных представляет собой актуальную область исследований современной органической химии - как в прикладном, так и в фундаментальном аспекте.

Цели и задачи

Цель:

Исследовать взаимодействие 2,4-динитрохлорбензола с 9-(2,4-диаминофенил)-9H-карбазолом.

Задачи:

- 1) Синтезировать 9-(2,4-диаминофенил)-9Н-карбазол.
- 2) Исследовать взаимодействие 9-(2,4-диаминофенил)-9Н-карбазола с 2,4-динитро-хлорбензолом в различных соотношениях и растворителях.
- 3) Исследовать полученные соединения методами ИК- ЯМР-спектроскопии и методами квантовой химии.

2. Обзор литературы.

2.1. Методы получения аминов.

Если амин находится в виде соли, то его выделяют действием сильных оснований (чаще всего щелочей), поскольку более сильное основание вытесняет более слабое из его соли (схема 1).

$$\begin{bmatrix} H_3C-CH_2-CH_2-NH_3^+ \end{bmatrix} CI^- \xrightarrow{NaOH} H_3C-CH_2-CH_2-NH_2$$

Схема 1

- Реакция аммиака и аминов с галогенпроизводными.

Реакция идет по механизму SN_2 через стадию образования солей. Действием сильных оснований выделяют свободные амины (схема 2).

$$R-X + NH_3 \longrightarrow \left[R-NH_3^+\right]X^- \xrightarrow{NaOH} R-NH_2$$

Схема 2

- Восстановление нитросоединений.

Нитросоединения могут быть восстановлены до аминов (схема 3).

$$R-NO_2 \xrightarrow{[H]} R-NH_2$$

Существует ряд восстанавливающих агентов и смесей для этой реакции. Первооткрыватель реакции Н.Н. Зинин использовал в качестве восстановителя сульфид аммония (схема 4):

$$\frac{(NH_4)_2S}{-S, -NH_3, -H_2O}$$

Схема 4

Однако могут применяться и другие восстановители. Так, например, для реакции восстановления 9-(4-нитрофенил)-9H-карбазола (схема 5)

$$[H]$$

$$NO_2$$

$$NH_2$$

Схема 5

в литературе описаны следующие восстановители: гидразин NH_2 - NH_2 и Pd/C в этаноле [1], сульфид натрия Na_2S в этаноле [2], хлорид олова (II) $SnCl_2$ в этаноле [3]. Кроме того, может быть использовано олово в соляной кислоте Sn/HCl (например, в тетрагидрофуране, толуоле).

- Восстановление нитрилов и оксимов (схема 6).

R-C=N
$$H_2$$
 R-CH₂-NH₂
R-CH=N-OH $kat (Ni)$ R-CH₂-NH₂

В качестве восстановителя в этой реакции используют водород в присутствии катализаторов (т.н. никель Ренея, палладий на угле), тетрагидроборат натрия NaBH₄, алюмогидрид лития LiAlH₄ [4].

Для каталитического гидрирования нитросоединений, оксимов и нитрилов наиболее оптимальными считаются условия, представленные в таблице 1 [5].

Таблица 1. Рекомендуемые условия проведения гидрирования.

Соединение	Продукт гидрирования	Катали- затор	Количество катализатора (мольные %)	Температура, ⁰ С	Давление, атм.
Нитросоеди-	Амин	В	1-5%	25	1
нение		Α	4-8%	25	1
		C	10-80%	25	1-3
Оксим, нитрил	Амин	В	1-10%, AcOH	25	1-3
			или HCl-MeOH		
		A	5-15%, AcOH	25	1-3
		C	3-30%	25	35-70

2.2. Химические свойства аминов.

- Основность.

Как и аммиак, амины являются слабыми основаниями, реагируют с кислотами с образованием солей, растворимые в воде амины имеют щелочную реакцию среды (схема 7).

$$H_{3}C-NH_{2} + H_{2}O \longrightarrow H_{3}C-NH_{3}^{+} + HO^{-}$$
 $R-NH_{2} + H-Br \longrightarrow R-NH_{3}^{+} Br^{-}$

Схема 7

Алифатические амины являются более сильными основаниями, чем поскольку +І-эффект алкильных заместителей увеличивают электронную плотность на атоме азота и его основные свойства. ароматических аминах неподеленная электронная пара атома азота «растекается» по сопряженному ароматическому кольцу, вследствие чего их основные свойства выражены слабее, чем таковые у аммиака.

- Алкилирование. Образование амидов кислот. (схема 8)

$$R-NH_2 + CI-R^1 \longrightarrow \begin{bmatrix} R \\ R^1 \end{bmatrix} NH_2^{+}CI^{-} \xrightarrow{NaOH} R-NH-R^1$$

$$- NaCI \\ - HOH$$

Схема 8

Реакция протекает по механизму SN_2 . При алкилировании третичных аминов образуются четвертичные аммониевые соли (схема 9).

Схема 9

В литературе описано проведение алкилирования хлорпроизводного индола (схема 10) трехчасовым кипячением в бензоле [6].

Схема 10

Взаимодействием хлорзамещенного 4H-пиридо[1,2-a]пиримидина в кипящем этаноле в присутствии триэтиламина получен 2-(гексагидро-1H-азепин-1-ил)-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоксальдегид (схема 11).

Конденсация дигалогенпроизводных с аминами может приводить к образованию циклических соединений. Так, взаимодействие 9-(4-аминофенил)-9*H*-карбазола с 1,4-дифенил-1,4-дихлор-2,3-диаза-2,3-бутади-еном приводит к получению 9-[4-(2,5-дифенил-1,3,4-триазол-1-ил)фенил]-9*H*-карбазолов (схема 12) [7].

Действием на четвертичные аммониевые соли влажного оксида серебра (идет обменная реакция, форма записи $Ag_2O + H_2O$ связана с тем, что гидроксида серебра AgOH, как принято считать, не существует) получают

Cxema 12

четвертичные аммониевые основания (схема 13). Эти соединения являются достаточно сильными основаниями.

$$\begin{bmatrix} H_3C & CH_3 \\ H_3C & I \\ CH_3 \end{bmatrix} I - + Ag_2O + H_2O \xrightarrow{} - AgI \begin{bmatrix} CH_3 \\ H_3C & I \\ CH_3 \end{bmatrix} OH$$

Схема 13

Галогенангидриды кислот при действии на них аммиака и аминов образуют амиды кислот. Аналогичные соединения можно получить взаимодействием аминов с ангидридами карбоновых кислот (схема 14).

$$R - C \longrightarrow NH_3 \longrightarrow R - C \longrightarrow NH_2R^1 \longrightarrow R - C \longrightarrow NH - R^1$$

$$Cxema 14$$

- Окисление.

Амины являются достаточно сильными восстановителями и окисляются до нитросоединений, причем реакция проходит через множество промежуточных продуктов окисления. В качестве окислителя используется, в числе прочих, пероксотрифторуксусная кислота CF₃COOOH (схема 15).

$$R-NH_2 \xrightarrow{[O]} R-NO_2$$

$$[O] = CF_3COOOH$$

Схема 15

- Реакция с карбонильными соединениями.

Атом азота в аминах несет на себе неподеленную электронную пару и является нуклеофильным реагентом, способным к реакции нуклеофильного присоединения (Ad_N) к карбонильным соединениям. В результате реакции образуются имины (схема 16).

$$R-C + H_2N-R \longrightarrow R-C - NH-R \longrightarrow R-C - NH-R$$

$$H_2O H_1$$

$$H_2O H_2O H_2$$

$$H_3O H_3$$

$$H_4O H_3O H_4$$

Схема 16

Конденсация (поли)аминов с карбонильными соединениями - один из самых распространенных методов синтеза азотсодержащих гетероциклов. Так, взаимодействие 1,4-дикарбонильных соединений с первичными аминами - распространенный способ синтеза замещенных пирролов, известный как синтез Пааля-Кнорра (схема 17).

$$R + R^{1} \longrightarrow R \longrightarrow R \longrightarrow R$$

$$Cyena 17$$

3. Экспериментальная часть.

3.1. Синтез 9-(2,4-диаминофенил)-9Н-карбазола.

Исходным соединением для синтеза 9-(2,4-диаминофенил)-9*H*-карбазола является 9-(2,4-динитрофенил)-9*H*-карбазол **3**, который синтези-ровали кипячением эквимолярной смеси гидроксида натрия, 2,4-динитрохлорбензола **2** и карбазола **1** в ДМФА с обратным холодильником в течение 3-4 ч. (схема 18). Реакционную массу после окончания синтеза вылили в воду со льдом, выпавшие темно-желтые кристаллы соединения **3** отфильтровали под вакуумом и использовали без дополнительной очистки.

$$\begin{array}{c|c} & & & \\ & & &$$

Схема 18

Восстановлением соединения **3** хлоридом олова (вариант А) или сульфидом натрия (вариант В) в кипящем этаноле в течение 2-3 ч. получили дигидрохлорид 9-(2,4-диаминофенил)-9*H*-карбазола **4a** (схема 19). Чистый диамин **4** выделяли действием концентрированного раствора гидроксида натрия с последующей экстракцией этилацетатом. Эктракт отгоняли, соединение **4** концентрировали на воздухе.

[H]
$$[H] = \operatorname{SnCl_2*2H_2O}(A)$$

$$\operatorname{Na_2S*9H_2O}(B)$$

$$EtOH, reflux$$

$$H_2N*HCI$$

$$4a$$

$$Cxema 19$$

Исследованы ИК- и ЯМР ¹H-спектры соединения **4.** ЯМР ¹H-спектр неочищенного соединения **4** (рис. 5) оказался малоинформативен. Соединение **4** представляет собой темное вещество, долго сохраняющее вязкость даже при стоянии на воздухе, сигналы алифатических протонов 2.5-2.7 м.д. могут быть отнесены к этилацетату, которым экстрагировали вещество. ИК-спектр соединения **4** (рис. 6) содержит широкую полосу 3417 см⁻¹ и 1693 см⁻¹, соответствующие валентным и деформационным колебаниям NH₂-групп соответственно.

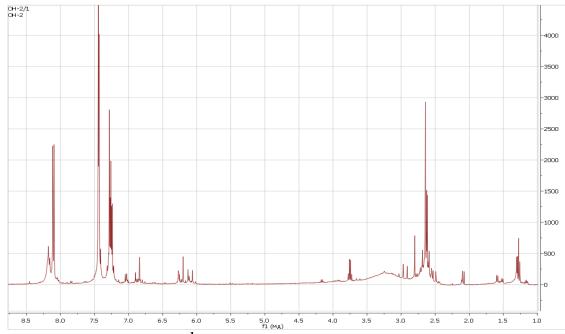


Рис. 5. ЯМР ¹Н-спектр неочищенного соединения 4

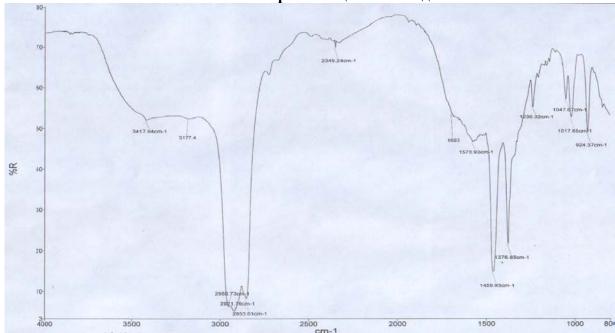


Рис. 6. ИК-спектр соединения 4

3.2. Взаимодействие 9-(2,4-диаминофенил)-9H-карбазола с гаолгенаренами.

Нами в различных условиях и растворителях проведено арилирование 9-(2,4-диаминофенил)-9H-карбазола галогенаренами.

Взаимодействие 9-(2,4-диаминофенил)-9*H*-карбазола с 2,4-динитро-хлорбензолом (далее - ДНХБ) (схема 20) проводилось в трех вариантах (таблица 1), варьировали растворитель и применяемое основание. В случае пиридина, обладающего основным характером и способного связывать хлороводород, основание не добавлялось.

Таблица 1. Варианты проведения реакции соединения 4 с ДНХБ.

	Соотношение	Основание	Температурный	Растворитель	Время,
	(диаминофенилкарбазол:ДНХБ)		режим		Ч
5a	1:1	K_2CO_3	Комнатная	Хлороформ	1,5
5b	1:1	Пиридин	Кипячение	Пиридин	1,5
5c	1:2	Пиридин	Кипячение	Пиридин	1,5
5d	1:2	K ₂ CO ₃	Кипячение	Толуол	1,5

При добавлении раствора гидроксида натрия в реакционную среду реакции №1 происходило осмоление реакционной среды и появлялся запах тухлой рыбы, свойственный третичным аминам. Возможно, произошла реакция хлороформа с находящимися в реакционной среде аминами.

После упаривания реакционной массы реакций №2 и №3 и затирания образовавшейся твердой смолы получены темно-коричневые аморфные порошкообразные вещества **5 а-d**. В ИК-спектрах этих соединений присутствуют полосы, которые отсутствуют в ИК-спектре соединения **4** и могут быть отнесены к нитрогруппам. Полосы аминогрупп ≈ 3410 см⁻¹ в сравнении с таковыми в спектре исходного соединения **4** стали более узкими и интенсивными. Ниже представлены ИК-спектры соединений **5b** (рис. 7) и **5d** (рис. 8).

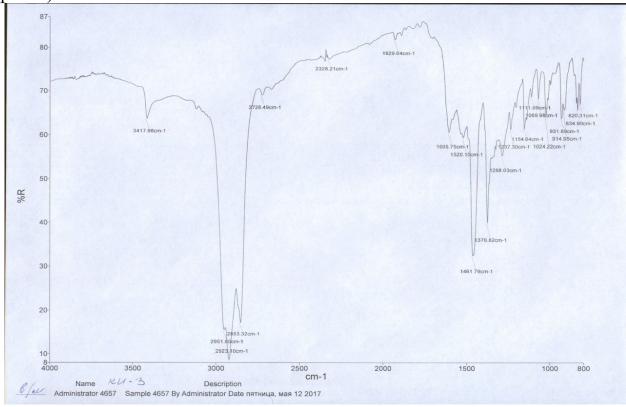


Рис. 7. ИК-спектр соединения 5b

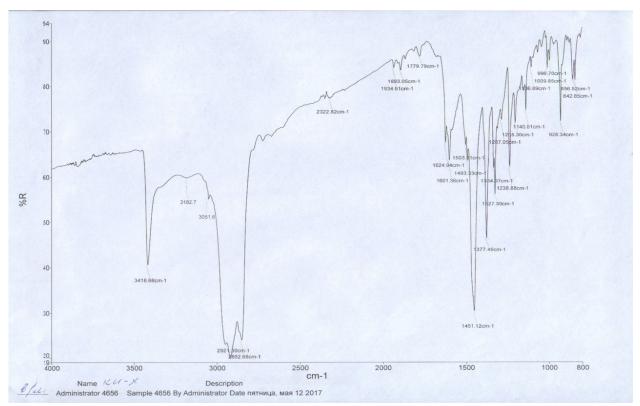
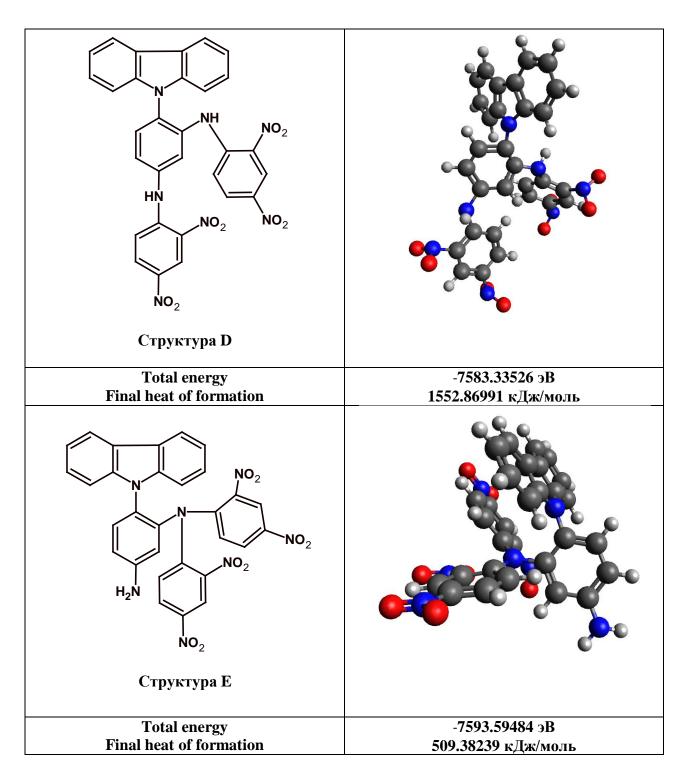


Рис. 8. ИК-спектр соединения 5d

Схема 20

Проведение реакции при соотношении 9-(2,4-диаминофенил)-9H-карбазол:ДНХБ = 1:1 теоретически может дать продукты замещения по аминогруппе в положениях C^2 или C^4 бензольного кольца или их смеси (схема 21). Аналогичная реакция, проводимая в соотношении 9-(2,4-диаминофенил)-9H-карбазол:ДНХБ = 1:2, имеет еще больше теоретически возможных исходов (схема 22).


Схема 22

Оптимизированная геометрия и энергетические характеристики потенциальных продуктов реакций были исследованы методами квантовой химии, расчет проводили в пакете программ МОРАС в приближении RM1. Результаты расчета представлены в таблице 2.

Таблица 2. Оптимизированная геометрия и энергетические характеристики

потенциальных продуктов реакций (схемы 23 и 24).

Формула соединения	Оптимизированная геометрия и
H_2N N O_2N O_2N O_2N	энергетические характеристики
Total energy Final heat of formation	-5276.73693 эВ 1024.01740 кДж/моль
NH NO ₂	
Структура В	-5265.68828 3B
Total energy Final heat of formation	-5205.06626 ЭБ 2086.24804 кДж/моль
О2N NO2 NO2N NO2 О2N NO2 Структура С	
Total energy Final heat of formation	-7583.78288 эВ 1502.40570 кДж/моль

Структуры N-моноарилированных продуктов A и B близки по энергии и более устойчивы, чем структуры C-E. С учетом этого можно предположить, что как при проведении реакции в соотношении 1:1, так и при ее проведении в условиях двукратного избытка ДНХБ, имеет место образование смеси продуктов.

4. Методики синтезов.

ИК спектры полученных соединений снимали на спектрофотометре Spectrum Two в виде пасты в вазелиновом масле и на спектрофотометре Specord IR-75 в виде тонкой пленки между призмами из хлорида натрия. Спектры ЯМР 1 Н записывали на спектрометре Bruker WP-400 в CDCl $_3$ и ДМСО- d_6 , внутренний стандарт - TMC.

Раствор 9-(2,4-динитрофенил)-9*H*-карбазол **(3)** 2,4эквимолярного количества карбазола, динитрохлорбензола и гидроксида натрия в ДМФА кипятили с обратным холодильником в течение 2-3 часов. Смесь охлаждали до комнатной температуры, выливали в темно-желтый воду co льдом, выпавший осалок отфильтровывали.

9-(2,4-динитрофенил)-9*H***-карбазол (4).** Смесь 9-(2,4-динитрофенил)-карбазола и SnCl₂ (в избытке) в этиловом спирте кипятили в течение 1,5-2 ч (контроль методом ТСХ, элюент - этилацетат). После этого смесь охлаждали до комнатной температуры, добавляли раствор NaOH до щелочной реакции среды и экстрагировали этилацетатом, органический слой объединяли и сушили на воздухе.

Выводы

- Синтезирован исходный 9-(2,4-диаминофенил)-9H-карбазол, исследованы его ИК- и ЯМР 1 Н-спектры.
- Исследование ИК-спектров и данных квантово-химических расчетов продуктов реакции 9-(2,4-диаминофенил)-9H-карбазола с ДНХБ в соотношениях 1:1 и 1:2 дает основание предположить, что в ходе процесса происходит образование смеси продуктов N-арилзамещенных 9-(2,4-диаминофенил)-9H-карбазолов.

Список литературы

- 1. C.S. Wu, J.W. Wu, Y. Chen. Bipolar material with spiro-fluorenyl terminals: synthesis, characterization and application for enhancement of electrophosphorescence // J. M. Chem., 2012, Vol.22, P.22377-23884
- 2. J. Sołoducho, J. Doskocz, J. Cabaj, S. Roszak Practical synthesis of bis-substituted tetrazines with two pendant 2-pyrrolyl or 2-thienyl groups, precursors of new conjugated polymers // Tetrahedron, 2003, 59, 26. 4761-4766; b) F.D. Bellamy, K. Ou // Tetrahedron Lett., 1984, Vol.25, P. 839-842
- 3. J.W. Kim, E.J. Park, E.J. Lyu, Y.S. Lee, Y. Kwon, L.S. Park. Synthesis and Electro-Optical Properties of Carbazole Containing Copolymers with Different Conjugated Structures for Polymer Light-Emitting Devices // Crystals and Liquid Crystals, 2009, 499, 112-127; 2) F.D. Bellamy, K. Ou Selective reduction of Aromatic nitro compounds with stannous chloride in nn acidic and non aqueous medium// Tetrahedron Lett., 1984, Vol.25, P. 839-842
- 4. Любой учебник
- 5. Дядченко В.П., Трушков И.В., Брусова Г.П. Синтетические методы органической химии: учеб. пособие. МГУ, 2004.
- 6. Власкина Н.М., Бабакова М.Н., Суздалев К.Ф., Карцев В.Г. 9,1',3'-Триметил[1,2-a]азепано-3,5'-пиримидинспиро- α -карболин-2',4',6',-трион // Химия гетероциклических соединений. Современные аспекты. Том 2. М.: МБФНП, 2014.
- 7. Бердников Р.А., Бакиев А.Н., Шкляева Е.В. Синтез и физико-химические исследования N-арилзамещенных карбазолов, содержащих 1,3,4-триазольный цикл // Тез. докл. V Международной конф. «Техническая химия. От теории к практие». Пермь, 2016. С. 72

Приложение 1

Благодарности

- Благодарим профессора кафедры органической химии ПГНИУ д.х.н. Сергея Николаевича Шурова и старшего преподавателя кафедры органической химии ПГНИУ Татьяну Владимировну Шаврину за съемку ИК-спектров.
- Благодарим к.х.н., старшего преподавателя кафедры неорганической химии, химической технологии и техносферной безопасности ПГНИУ Ивана Геннадьевича Мокрушина за съёмку ЯМР-спектров.
- Благодарим к.х.н. Степанову Екатерину Евгеньевну за консультативную помощь по методикам синтеза и установке программ для квантово-химического моделированию.
- Благодарим зав. лабораторией ПНИПУ Жеребцову Любовь Ивановну за предоставление органического практикума кафедры химии и биотехнологии ПНИПУ.

Шаврина Татьяна Владимировна

д.х.н. Шуров Сергей Николаевич

к.х.н. Мокрушин Иван Геннадьевич

к.х.н. Степанова Екатерина Евгеньевна